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FRANCE

Abstract: In the hyperspectral images (HSI) acquired by the new-generation hyperspectral sensors the signal de-
pendent noise is an important limitation to the detection or classification. Therefore, noise reduction is an important
preprocessing step to analyze the information in the hyperspectral image (HSI). A signal dependent noise cannot
be reduced by conventional linear filtering. Therefore, a new method based on multiple linear regression (MLR)
and Parallel factor analysis (PARAFAC) decomposition is proposed to estimate the noise of hyperspectral remote
sensing image. Then, the estimated noise is used for whitening the colored structural noise. By using this transfor-
mation, the data noise from new-generation hyperspectral sensors is diminished, thereby allowing a minimization
of negative impacts on hyperspectral detection and classification applications.
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1 INTRODUCTION

Hyperspectral sensors collect data in hundreds of
narrow contiguous spectral bands, providing power-
ful means to discriminate different materials by their
spectral features. Actually, denoising is of great inter-
est for target detection and classification [1] with the
underlying principle of targets being distinguishable.
As HSIs are normally produced by a series of sensors,
the noise mainly comes from two aspects: signal-
independent circuity noise (SI) and signal-dependent
photon noise (SD) [2]. The noise level of HSI may
vary dramatically from band to band. The noise vari-
ance in each band of HSI is not constant, in particu-
lar, there exist some bands at which the atmosphere
absorbs so much light that the signal received from
the surface is unreliable. Although the SD noise has
become as dominant as the SI noise in HSI data col-
lected by new-generation hyperspectral sensors due to
the improved sensitivity in the electronic components
[2–4], the additive SI noise is still an important part
of noise [5]. For this the denoising methods for those
two types of noise are not the same. The SI noise term
is generally modelled as additive and spatially station-
ary in each band, but the variance of the noise varies
from band to band. That is to say, the level of the
noise is dependent on the average amplitude of each
band, but spatially stationary in each band. Based on
HSI with high spatial resolution often contain a large
number of small homogeneous areas, in [6] an au-

tomatic algorithm by dividing an image into several
small blocks and calculating local means and local
standard deviations of these blocks is developed, then
estimating the noise by using a histogram statistical
algorithm. To approximate better the noise variance of
small blocks, [7] utilized data-masking technology by
assuming that image textures are generally smoother
than noise. However, the aforementioned methods
treat separately each band in HSI data and fail to take
spectral information into account. To utilize better the
information from high spectral resolution of HSIs, a
spectral and spatial decorrelation algorithm [8] based
on the multiple linear regression (MLR) model was
proposed to estimate noise. The residuals of the MLR
model are considered to be noise, while the signal of
a pixel at a particular band can be described as a lin-
ear combination of the neighboring pixels in the same
band and the same spatial pixels in immediately ad-
jacent bands. Based on the mixed noise assumption,
the splitting of noise and the original signal from a
HSI is usually the first step in these algorithms. Then,
maximum likelihood estimation is used for the esti-
mation of the SD and SI noise parameters in the sec-
ond step [9], this method is referred to as the hyper-
spectral noise parameter estimator (HYNPE) method.
In [2], the SD and SI noise were estimated from a sin-
gle scanning window. Because of the high computa-
tional complexity, the algorithm is not widely applied.
In summary, MLE-based algorithms suffer from two

WSEAS TRANSACTIONS on SIGNAL PROCESSING Salah Bourennane, Caroline Fossati

E-ISSN: 2224-3488 20 Volume 15, 2019



disadvantages: sensitivity in initial value selection and
high computational complexity for the optimal solu-
tion. Recently, in [10] denoising algorithm employ-
ing a spectral-spatial adaptive total variation model
(SSATV), in which the spectral noise differences and
spatial information differences are both considered in
the process of noise reduction is proposed. In this pa-
per, we propose a novel algorithm that can estimate
noise from HSIs with different noise types.

According to the different statistical properties of
SI and SD noise, in this paper, we propose two-step
method to remove these two types of noise respec-
tively. Firstly, by considering the SI noise as the resid-
ual image obtained by MLR method [8]. Then, the
SD noise could be further reduced by PARAFAC de-
composition [11, 12] due to the statistical property of
SD noise. So the proposed MLR-PARAFAC hybrid
method can denoise HSIs distorted by both SD and
colored SI noise. Our proposed method is applied
to the simulated HSIs in order to evaluate their per-
formances in a controlled environment. Results ob-
tained on the real-world HYperspectral Digital Im-
agery Collection Experiment (HYDICE) and airborne
visible/infrared imaging spectrometer (AVIRIS) In-
dian Pines HSIs are also presented and discussed.
To compare the denoising performance of MLR-
PARAFAC to other methods, prewhitening-multiway
Wiener filter (PMWF) method proposed to reduce
colored SI noise [13], PARAFAC, HYNPE method,
SSATV method and two well-known 2D denoising
methods, minimum noise fraction (MNF) and noise-
adjusted principal components analysis (PCA) [14],
are used in the experiment section. The experimental
results show that the proposed method can estimate
the variance of the noise in each band accurately and
have potential prospective in the reduction of both SI
and SD noise in HSIs.

The remainder of the paper is organized as
follows : Section 2 reviews some multilinear algebra
tools. Section 3 gives the data model of HSI dis-
torted by both SD and SI noise. Section 4 presents
the detailed description of our proposed based on
multiple linear regression and multilinear algebra
decomposition for enhancement of SNR. Some
denoising and comparative results are contained in
Section 5. Finally, section 6 concludes the paper.

2 Multilinear algebra tools and sig-
nal model

In this paper, the order of a tensor is defined as the
number of dimensions or modes. Let I1, I2, I3 ∈ N
denote index upper bound the tensor. A tensor X ∈

RI1×I2×I3 is a real 3-dimensional array, whose ele-
ment is noted as xi1,i2,i3 , where i1 = 1, · · · , I1, i2 =
1, · · · , I2 and i3 = 1, · · · , I3. In the following, some
basic multilinear algebra tools used in tensor decom-
positions are introduced.

2.1 Rank-one Tensor
An N -mode tensor X ∈ RI1×I2×I3 being rank 1
means that it can be written as the outer product [15]
of 3 vectors, that is: X = a(1) ◦ a(2) ◦ a(3). So,
each element of X is xi1,i2,i3 = a

(1)
i1
a
(2)
i2
a
(3)
i3

for all

1 ≤ in ≤ In with n = 1, 2, 3, where a(1)i1
, a

(2)
i2

and

a
(3)
i3

are the i1th, i2th and i3th element of a(1),a(2)

and a(3), respectively.

2.2 n-mode Unfolding

The n-mode vectors are the In-dimensional vec-
tors obtained from a tensor by varying index in while
keeping the other indices fixed. The so-called n-mode
flattened matrix Xn ∈ RIn×Mn (n = 1, 2, 3) de-
notes the n-mode unfolding matrix of a tensor X ∈
RI1×I2×I3 , with size In ×Mn where Mn = Ip × Iq
with p 6= q 6= n (p, q = 1, 2, 3). The columns of
Xn are the In-dimensional vectors obtained from X
by varying index in while keeping the other indices
fixed.

2.3 n-mode Product
The n-mode product ” ×n ” is defined as the product
between a data tensor X ∈ RI1×...×IN and a matrix
B ∈ RJ×In in mode n. It leads to the tensor U=X×n

B of size I1 × · · · × In−1 × J × In+1 × · · · × IN ,
whose entries are given by ui1,··· ,in−1,j,in+1,··· ,iN =∑In

in=1 xi1,i2,···iN bj,in where bj,in denotes the (j, in)
element of matrix B and j = 1, · · · J .

2.4 PARAFAC Decomposition Model
PARAFAC model factorizes a tensor into a sum
of rank-1 tensors [15]. For instance, tensor Y ∈
RI1×I2×I3 can be expressed as

Y ≈ Ŷ =

Ks∑
k=1

Yk =

Ks∑
k=1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k (1)

where Ks is the rank, Ŷ is the rank-Ks PARAFAC
approximation of Y; Yk ∈ RI1×I2×I3 is rank-1 tensor;
a
(1)
k ,a

(2)
k ,a

(3)
k ∈ RIn are normalized vectors of the n-

mode space of Y normalized by a
(n)
k = a

(n)
k /‖ a(n)k ‖,

n = 1, 2, 3; and λk = ‖a(1)k ‖‖a
(2)
k ‖‖a

(3)
k ‖, with k =
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1, 2, · · · ,Ks. From Eq. (1) the (i1, i2, i3)th entry of
the tensor Ŷ can be expressed as

ŷi1,i2,i3 =

Ks∑
k=1

λka
(1)
i1,k

a
(2)
i2,k

a
(3)
i3,k

(2)

with i1 = 1, . . . , I1, i2 = 1, . . . , I2, i3 = 1, . . . , I3.

3 Data Model
A noisy HSI can be expressed as a third order tensor
R ∈ RI1×I2×I3 composed of a multidimensional sig-
nal X ∈ RI1×I2×I3 impaired by an additive random
noise N(X) ∈ RI1×I2×I3 . The tensor R can be ex-
pressed as [16]:

R = X + N(X) (3)

where N(X) accounts for both SI and SD noise [17]
and its variance depends on the pixel xi1,i2,i3 in the
useful signal X. Element-wise, the data model is:

ri1,i2,i3 = xi1,i2,i3 + (xi1,i2,i3)1/2 · ui1,i2,i3 + wi1,i2,i3
(4)

where ui1,i2,i3 is a stationary, zero-mean uncorrelated
random process independent of xi1,i2,i3 with variance
σ2u,i3 and wi1,i2,i3 is electronics noise which is zero-
mean white Gaussian noise in each band with variance
σ2w,i3

. The additive term x1/2u is the generalized SD
noise and denoted as photon noise, w is the SI noise
component and is generally assumed to be Gaussian
distribution in each band. Then, we can define:

N(X) = NSD(X) + NSI = NSD(X) + W, (5)

and Eq.(3) can be correspondingly rewritten as

R = X + NSD(X) + W. (6)

With the assumption that x, u and w are indepen-
dent and both u and w are zero mean and are station-
ary, the variance of noise N(X) in band i3 of the HSI
could be written as [2, 9]

σ2N(X),i3
= σ2u,i3 · µi3 + σ2w,i3 (7)

where µi3 , E[X] = 1/(I1I2)
∑I1

i1=1

∑I2
i2=1 xi1,i2,i3

is the mean of all xi1,i2,i3 in the i3th band of X with
i3 = 1, · · · , I3. The unfolding matrix R3 ∈ RI3×M3

of the HSI data tensor R ∈ RI1×I2×I3 (with M3 =
I1I2 ) can be expressed as :

R3 = X3 + N(X)3 (8)

where X3 is the 3-mode unfolding matrix of the mul-
tidimensional signal tensor X and

N(X)3 = NSD(X)3 + W3 (9)

with NSD(X)3 and W3 being the 3-mode unfolding
matrices of NSD(X) and W respectively. Using the
mean noise variance of the i3th spectral band defined
as 1/(I1I2)

∑I1
i1=1

∑I2
i2=1 σ

2
N(X),i1,i2,i3

= µi3σ
2
u,i3

+

σ2w,i3
where

µi3 = 1/(I1I2)
∑I1

i1=1

∑I2
i2=1 xi1,i2,i3 is the mean of

all xi1,i2,i3 in the i3th band of X with i3 = 1, · · · , I3,
and the assumption of the independence of x and u,
where u is zero-mean and independent between spec-
tral bands, the covariance matrix of the 3-mode un-
folding matrix NSD(X)3 can be expressed as:

C(3)
NSD(X) = diag(µ1σ

2
u,1, µ2σ

2
u,2, · · · , µI3σ2u,I3)

(10)

4 Proposed method : Noise estima-
tion

4.1 Signal Independent Noise Estimation
Method Based on Multiple Linear Re-
gression

Hyperspectral sensors measure the radiance from the
observed scene in many spectral bands very close in
wavelengths, thus the signal X is generally character-
ized as having strong spectral correlation [14, 18]. By
supposing that the noise in HSI is spectrally uncorre-
lated and the signal has strong spectral correlation, the
signal X could be estimated by resorting to the well-
known MLR based approach [8] which exploits the
strong spectral correlation of the signal and the weak
between band correlation of the SI noise in HSIs. Af-
ter estimating the pixel values in each band as a linear
combination of the pixel values in the remaining I3−1
bands, the noise is reduced as a result.

For the unfolding matrix R3 ∈ RI3×M3 of
the HSI data tensor R ∈ RI1×I2×I3 (with M3 =
I1I2 ), the M3-dimensional row vector is defined as
ri3 = [ri3,1, ri3,2, · · · , ri3,M3 ] with i3 = 1, · · · , I3.
Considering the (I3 − 1 × 1) vector z(i3)m =
[r1,m, · · · , ri3−1,m, ri3+1,m, · · · , rI3,m]T with m =
1, · · · ,M3 and the (I3 − 1 × M3) matrix Zi3 =

[z(i3)1 , z(i3)2 , · · · , z(i3)M3
], the MLR-based approach ob-

tains an estimate r̂i3 of ri3 as a linear function of Zi3 :
r̂i3 = cT

i3
Zi3 , where ci3 is the regression vector of size

I3−1×1. The least squares estimator of ci3 is given by
ci3 = (Zi3ZT

i3)−1Zi3rT
i3

. Then the signal after noise
reduction by multiple linear regression method is es-
timated by r̂i3 = cT

i3
Zi3 , and the reduced noise can be
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calculated by ŵi3 = ri3 − r̂i3 = ri3 − cT
i3

Zi3 . Thus,
the estimated tensor R̂ could be rebuilt by the esti-
mated unfolding matrix R̂3 constructed by r̂i3 with
i3 = 1, · · · , I3, i.e., R̂3 = [r̂T

i1 , · · · , r̂
T
I3 ]T, while a

considerable part of the SD noise is still remained in
R̂. However, an estimate of SI noise is

Ŵ = R− R̂ (11)

with
R̂ = X + NSD(X) (12)

4.2 Signal Dependent Noise Estimation
Method Based on PARAFAC Decompo-
sition Model

Our aim is to estimate the signal tensor X from ten-
sor R̂, in the sense of minimum mean square error.
From Eq. (1) the rank-Ks PARAFAC approximation
of noisy R̂ is:

Ra =

Ks∑
k=1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k (13)

With the assumption that the noisy tensor R̂ can be
exactly expressed by sum of K (K > Ks) rank-1 ten-
sors, then:

R̂ =

Ks∑
k=1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k (14)

+
K∑

k=Ks+1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k = Ra + M

where M =
∑K

k=Ks+1 λka
(1)
k ◦a

(2)
k ◦a

(3)
k is a residual

tensor.
Since the rank-1 tensors are orthogonal, then the
square error of PARAFAC decomposition
‖R̂ − Ra‖2 =

∑K
k=Ks+1 λ

2
k‖a

(1)
k ◦ a

(2)
k ◦ a

(3)
k ‖

2.

According to the definition in Eq. (2), a
(n)
k =

a
(n)
k /‖a(n)k ‖, n = 1, 2, 3, element-wise, a(n)i,k =

a
(n)
i,k /

(∑In
i=1 |a

(n)
i,k |

2

)1/2

, then

a
(1)
k ◦ a

(2)
k ◦ a

(3)
k = (15)

a
(1)
i,ka

(2)
j,ka

(3)
p,k(∑I1

i=1 |a
(1)
i,k |

2

)1/2(∑I2
j=1 |a

(2)
j,k |

2

)1/2(∑I3
p=1 |a

(3)
p,k|

2

)1/2

=
a
(1)
i,ka

(2)
j,ka

(3)
p,k(∑I1

i=1

∑I2
j=1

∑I3
p=1 |a

(1)
i,ka

(2)
j,ka

(3)
p,k|2

)1/2

so, ‖a(1)k ◦ a(2)k ◦ a(3)k ‖
2 = 1 and ‖R̂ − Ra‖2 =∑K

k=Ks+1 λ
2
k.

Therefore, min ‖R̂ −Ra‖2 = min
∑K

k=Ks+1 λ
2
k =⇒

{λk | k = Ks + 1, · · · ,K} are (K −
Ks) smallest terms among {λk | k = 1, · · · ,K}.
Therefore, the minimum of the square error
‖R̂ − Ra‖2 corresponds to throw away other
smaller terms from Ks + 1 to K of PARAFAC de-
composition. The signal components in the smallest
terms from Ks + 1 to K are the smallest ones among
all the signal components from 1 to K of PARAFAC
decomposition. Therefore, for fixed Ks, PARAFAC
decomposition can reduce the noise, that is to say: the
rank-Ks PARAFAC approximation of a noisy tensor
results in an estimation of the signal,i.e.,

Ra =

Ks∑
k=1

λka
(1)
k ◦ a

(2)
k ◦ a

(3)
k ≈ X̂. (16)

Since the denoising by PARAFAC decomposition
is based on skipping smaller terms from Ks + 1 to
K where SD noise components exist, so PARAFAC
decomposition has the effect of the reduction of SD
noise, that is to say the residual parts of PARAFAC
decomposition, i.e.,

R̂− Ra = R̂− X̂ = N̂SD(X) (17)

is an estimate of the noise NSD(X). Finally, by using
Eq. (11) and Eq. (17), an estimate of the non-white
noise can be expressed as

N̂(X) = N̂SD(X) + Ŵ (18)

4.3 Obtaining the Optimal Rank Ks of
PARAFAC Decomposition

In this paper, we assume that the statistical properties
of both the signal and the remaining SD noise after
the SI noise reduction are relatively constant in the
estimated tensor R̂ and the variance of the SD noise
in Eq. (7) can still be expressed by σ̂2u,i3 · µ̂i3 , where
σ̂2u,i3 and µ̂i3 are the variance of random process
ui1,i2,i3 and the mean of all pixels in the i3th band
of R̂, respectively. Therefore, the covariance matrix
C(3)

N̂SD(X)
of remaining SD noise is still a diagonal

matrix. If the squared norm of the covariance
‖C(3)

N̂SD(X)
‖2 is quite close to the sum of the squared
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diagonal elements
∑I3

i3=1 c
2
i3,i3

, then this C(3)

N̂SD(X)

can be considered approaching a diagonal matrix.
This criterion is used to estimate the optimal rank Ks
of PARAFAC decomposition for the reduction of SD
noise.

4.4 Summary of the Proposed Method for
Signal-to-Noise Enhancement

The complete proposed method to reduce both SD and
SI noise noise in HSIs can be summarized as follows:

1. Unfold tensor R to matrix Rn = Xn + Nn(X),
n = 1, 2, 3, estimating the SI noise W from R
using MLR, and obtain R̂

2. Estimate the SD noise NSD(X) from R̂ using
PARAFAC:

(a) Unfold the estimated noise tensor NSD(X)
to n-mode unfolding matrix with n =
1, 2, 3,

(b) Calculate the covariance matrix of the n-
mode unfolding matrix of the estimated
noise tensor,

(c) Use the criterion above to assess the result
matrix obtained from step b) diagonal ma-
trix. Then, the rank Ks of PARAFAC de-
composition for the reduction of SD noise
could be obtained from these three steps.

3. Calculate the noise tensor N̂(X) = N̂SD(X)+Ŵ

4. Estimate the signal tensor X̂ = R− N̂(X)

5 Experimental results
To demonstrate the efficacy of different methods for
both SD and SI noise reduction, the peak signal to
noise ratio (PSNR) of the denoised HSI will be com-
pared. The PSNR can be calculated by

PSNR = 10 log10
(max{X})2

MSE
(dB) (19)

where

MSE = 1/(I1I2I3)

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

(xi1i2i3 − x̂i1i2i3)2

(20)
In addition, the variance of the residual noise, X̂− X,
in the simulated HSI and the variance of the removed
noise, R − X̂, in the real data are compared in this

paper after denoising by different considered meth-
ods: MLR-PARAFAC, PARAFAC, PMWF, HYNPE,
SSATV, and two well-known 2D denoising methods,
MNF and noise-adjusted PCA.

5.1 Simulated Data Experiments
To verify the performance of the proposed method a
synthetic HSI is generated according to the data model
in Eq. (3), with the spectral signatures presented in
Fig. 1 (a), having size 150 × 150 × 148 . There are
six target types and three different spatial sizes 7 ×
7 pixels, 2 × 2 pixels and 1 × 1 pixel of each type,
which are shown in Fig. 1(b). These targets are mixed
to the background by using the linear mixing model
with target abundance being 85% (mixing ratio). The
random noise is generated with a variance depending
on the value of the useful signal according to Eq. (7)
and added into the signal X as Eq. (4) to create the
simulated HSI data R. In the following sections, the
variance of the residual noise in the simulated HSIs
after denoising, the peak signal to noise ratio (PSNR)
and the ACE target detection results of simulated HSI
denoised by the considered methods will be illustrated
and discussed.

Figure 1: (a) Spectral signatures of the simulated
targets and background, (b) Simulated HSI without
noise, from top to bottom the index of targets is 1 to 6
respectively

5.1.1 Variance of Residual Noise
Fig. 2(a) shows the noisy simulated image with SNR=
30dB, from which one can see that the small targets
are almost disappeared in the noise. The variances of
SD and SI noise are chosen equal (σ2NSD(X) = σ2w),
thus the noise variance of N(X) in this case varies
strongly from band to band. The variance of the resid-
ual noise, X̂ -X, in the denoised HSI is evaluated at
each band and some results are shown in Fig. 2 (b)
where the noise variance of N(X) in the raw simu-
lated HSI is also illustrated as a comparison. From
Fig. 2 (b) it can be seen that all the considered meth-
ods can effectively remove the noise in the simulated
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HSI since the residual noise variance are much lower
than that in raw HSI. But, Fig. 2 (b) demonstrates that
the denoised HSI by MLR-PARAFAC method con-
tains the least noise when compared against other con-
sidered methods.

Figure 2: (a) Noisy image with SNR =30 dB, (b)
Noise variance of raw simulated HSI and residual
noise variances of denoised HSI

5.1.2 Influence of SD and SI Noise Variance Val-
ues on the Performance of Denoising Meth-
ods

The PSNR index is used to give a quantitative as-
sessment of the results obtained by applying different
denoising methods to the simulated HSI. In this ex-
periment, the random noise is generated with differ-
ent variance values depending on the mean value of
the useful signal according to Eq. (7) and added into
the signal X as Eq. (4) to create the simulated HSI
data R. To set the values of the two noise variances
σ2NSD(X) = 1/I3

∑I3
i3=1 σ

2
u,i3
· µi3 and σ2w,i3

, we de-
fine some quantities: The signal to noise ratio (SNR)
of the synthetic noisy HSI

SNR = 10 log10
‖X‖2

‖N(X)‖2
(dB) (21)

then the noise variance of N(X) is σ2N(X) = P · 10−
SNR
10

with

P = 1/(I1I2I3)

I1∑
i1=1

I2∑
i2=1

I3∑
i3=1

x2i1,i2,i3 . (22)

Assuming

δ = σ2NSD(X)/σ
2
w, (23)

for the given values of SNR the values of the noise
model parameters can be obtained:

σ2NSD(X) =
δ · σ2N(X)

1 + δ

σ2w =
σ2N(X)

1 + δ

(24)

With the definitions above, it is clear that for δ = 1,
σ2NSD(X) = σ2w, i.e., SD noise source contributes sim-
ilarly as white SI noise source to the simulated HSI,
and there is not a dominant noise source in the sim-
ulated HSI, for δ < 1, σ2w is higher than σ2NSD(X)

and the simulated HSI is distorted mainly by white
SI noise, otherwise for δ > 1 the SD noise source is
dominant. So, in this paper, we consider the cases of
δ = [0.1, 0.3, 0.5, 1.0, 1.5, 2.0, 2.5] with constant
SNR = 30dB which can help to evaluate the influ-
ence of SD and SI noise variance on the denoising
performance of different methods. The effectiveness
of the proposed MLR-PARAFAC hyperspectral image
denoising algorithm can be illustrated with quantita-
tive assessment results shown in Table 1, it can be
clearly seen that the the PSNR values using the MLR-
PARAFAC model are higher than the PSNR using the
other methods for all tested values of δ.

Table 1: PSNR (DB) OBTAINED BY APPLYING
DIFFERENT DENOISING METHODS TO SIMU-
LATED HSIS WITH SNR=30DB

δ 0.1 0.5 1.0 1.5 2.0
MNF 31.02 31.04 31.05 31.06 31.06

Noise-adj. PCA 31.12 31.14 31.14 31.15 31.16
HYNPE 36.64 36.82 36.90 37.10 37.10
PMWF 31.95 31.99 31.99 32.08 32.09

PARAFAC 38.71 38.84 38.85 38.88 38.88
SSATV 39.22 39.28 39.29 39.33 39.35

MLR-PARAFAC 43.05 43.09 43.11 43.25 43.29

5.1.3 Target Detection Performance: Probability
of Detection

The main purpose of HSI denoising is to improve
the results of detection, classification, etc. In this
section, we focus on the improvement of target de-
tection using the adaptive coherence/cosine estimator
(ACE) [19] which is largely applied to HSI data. The
results of ACE target detection of both simulated and
real data denoised by our proposed MLR-PARAFAC
method and other considered methods are shown and
discussed. For the HSI described in Eq. (3), the ACE
detector can be expressed as:

ACE =
(sTΓ−1rj)2

(sTΓ−1s)(rT
j Γ−1rj)

(25)

where rj is the vector in the unfolding matrix R3 of
tensor R with j = 1, · · · , I1I2, s is the target spectrum
template Γ is the covariance matrix of R3. To assess
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the performance of detection, the probability of detec-
tion (PD) is defined as:

PD =

∑ns
i N rd

i∑ns
i Ni

, (26)

and the probability of false alarm (PFA) is defined as:
PFA =

∑ns
i N fd

i∑ns
i (I1×I2−Ni)

, where ns is the number of
spectral signatures,Ni the number of pixels with spec-
tral signature i, N rd

i the number of rightly detected
pixels, and N fd

i the number of falsely detected pixels.
Fig. 3 shows the PD of ACE target detection re-
sults under the condition PFA=10−4 for simulated
HSI (Fig. 2 (a)) denoised by the considered methods
in this paper. In Fig. 3 it is clear that the probabil-
ity of detection of denoised HSI by MLR-PARAFAC
method outperforms other methods. According to
subsection 4.2, the SD noise is removed by throwing
away other smallest terms fromKs+1 toK, MLR re-
moves SI noise, thus the quality of the denoised HSI
by MLR-PARAFAC is ameliorated so much that the
ACE target detection of the denoised HSI is improved
greatly.

Figure 3: Probability of detection of simulated HSI
denoised by different methods with SNR= 30dB and
for PFA= 10−4

For the real-world HSIs, the denosing perfor-
mance of the proposed method is also verified and dis-
cussed in the next section.

5.2 Results on Real-World Data
As the previous test is not realistic in the sense that
true HSI is simulated according to the data model
in Eq. (3)-(7), two real-world images are consid-
ered in this section. The first one, referred to as
HYDICE HSI, was acquired by HYperspectral Dig-
ital Imagery Collection Experiment (HYDICE). The
second one, referred to as AVIRIS HSI was collected
by the airborne visible/infrared imaging spectrometer
(AVIRIS) from a mixed forest/agricultural site at the
Indian Pines test site in north-west Indiana.

5.2.1 Removed Noise Variance and Detection Re-
sults

The real-world HYDICE HSI shown in Fig. 4(a) has
150 rows and 140 columns and 148 spectral chan-
nels out of 210 with 0.75 m spatial and 10 nm spec-
tral resolution. It can be represented as a 3D data
cube, denoted by R ∈ R150×140×148. Six targets are
added into the HSI and each row of targets in Fig.
4(a) has the same target spectral signature (spectral re-
flectance) illustrated in Fig. 4(b), which is taken from
the image itself. The target size is 5 × 5 pixels along
the first column, 3 × 3 pixels along the second one
and 1 × 1 pixel along the last one. To assess the de-
noising results obtained by the proposed method, the
removed noise (R − X̂) variance is calculated at each
band and plotted in Fig. 5 and the receiver operating
characteristic (ROC) curves of ACE target detection is
presented in Fig. 6.

Figure 4: (a) HYDICE HSI used to compare differ-
ent denoising methods, from top to bottom the index
of targets is 1 to 6 respectively. (b) Spectral signa-
tures (spectral reflectances) of the simulated targets.
(c) Noise variance of raw HYDICE HSI

Figure 5: Variance of removed noise from HYDICE
HSI with different methods

Fig. 5 further demonstrates the effectiveness of
noise reduction of the image by the proposed method,
which indicates that SD noise really exists in this HY-
DICE HSI image.

Fig. 6 shows the comparison of ROC curves ob-
tained by ACE detector from different methods. It is
obvious that the PD values of ACE target detection of
denoised HYDICE HSI by MLR-PARAFAC method
are improved significantly when compared against
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Figure 6: ROC curves of the denoised HYDICE HSIs
obtained by ACE detector

raw HYDICE HSI counterpart and it is indicated that
they are superior to the other considered methods
in the reduction of both SD and SI noise. But the
improvement of target detection of the HYDICE HSI
denoised by PARAFAC method is inferior to that by
SSATV. Since the SSATV method has not limitation
in denoising colored noise, it can be concluded that
the SD noise is at least as dominant as the SI noise in
this HSI. The PMWF, noise-adjusted PCA and MNF
methods are not designed for SD noise reduction, so
their denoising performance are not ideal, which is
reflected indirectly by the target detection results in
these ROC curves in Fig. 6. HYNPE method has
limitation in removing all SD noise components as
shown in Fig. 5, the removed noise by this method is
least and correspondingly its denoising performance
confines its contribution in the improvement of target
detection of this HYDICE HSI.
In the next section, the classification is used to
evaluate the performance of the different denoising
methods.

5.2.2 Classification Results
To appreciate quantifiable comparisons, we determine
the overall accuracy (OA) in percentage exhibited by
SVM classifier [20, 21]. For P classes Ci, i =
1, . . . , P ; if aij is the number of testing samples that
actually belong to class Ci and are classified into Cj

for i, j = 1, . . . , P , then OA is defined as follows:
OA= 1

Ntotal

∑i=P
i=1 aii, where Ntotal is the total num-

ber of samples, P is the number of classes Ci for
i = 1, . . . , P and aii is equal to aij for i = j. That is,
in this paper, OA is defined as:

OA =
Ncorrect

Ntotal
× 100% (27)

where Ncorrect is the number of testing samples clas-
sified correctly into their corresponding classes. The

higher the OA, the better the classification result. For
this investigation, AVIRIS HSI (Fig. 7 (a)) is used [8].
The raw image size is 145× 145× 220. This HSI can
be represented as a tensor R ∈ R145×145×220 and its
ground truth is shown in Fig. 7 (b), which is sup-
plied with the original data. According to the ground
truth, there are 16 land cover classes in this AVIRIS
HSI. The numbers of training and testing samples are
shown in TABLE 2. Note that the minimum number
of training samples is set to 10 for the rare classes such
as Grass/pasture-mowed.

Figure 7: a) Raw AVIRIS HSI. b) Ground truth of the
used AVIRIS HSI

Table 2: TRAINING AND TESTING SAMPLES OF
CLASSIFICATION

ID Class Train. Samples Test. Samples
1 Corn-min 84 846
2 Hay-windrowed 48 479
3 Stone-st. towers 10 98
4 Woods 126 1264
5 Wheat 22 222
6 Soybean-clean 60 604
7 Oats 10 22
8 Soybean-notill 96 988
9 Corn 23 234
10 Bldg-Tree-Drives 38 372
11 Alfalfa 10 56
12 Corn-notill 142 1421
13 Grass/Trees 73 737
14 Grass/Pasture 53 533
15 Grass/past.-mowed 11 28
16 Soybeans-min 246 2476

To evaluate the performance of the proposed
algorithm in improving the classification efficiency,
the classification overall accuracy obtained after
denoising by different methods is presented in Fig.
8. As demonstrated by the previous experimental
results, it is also evident from the results portrayed
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in Fig. 8 that the OA of denoised image by the
proposed method is much higher than other processes
for all considered SNR values. MLR-PARAFAC
method reduces both SI and SD noise as shown in
the previous section, thus it performs well in the
improvement of classification from low to high SNR
cases. While PMWF becomes effective when the
input SNR is high (SNR> 30 dB). Because PMWF
is the combination of pre-whitening procedure and
MWF filter, MWF is based on the estimation of the
signal subspace by using the largest singular values
of the n-mode (n = 1, 2, 3) unfolding matrices [16].
Therefore, in the denoising process, MWF can
preserve more signal details for high SNR, which is
important to distinguish two close classes that which
permits to PMWF to exhibit an improved OA value.
When SNR< 30 dB, almost all the OA values of
SVM classifier of the denoised HSIs by HYNPE,
MNF and Noise-adjusted PCA methods are lower
than those by other methods due to the imperfect
denoising result of these methods in the reduction
of SD noise. Because, in the case of low SNR the
spectral correlation of the signal becomes weaker and
this correlation is further decreased by the stronger
noise in HSI. Since these methods seek to exploit
the spectral correlation of the signal, so the effect of
noise reduction by these methods is decreased by the
weak correlation among bands of the signal and the
classification of HSIs denoised by these methods are
affected correspondingly. When SNR> 30dB, the
classification results after denoising by these methods
are better.

Figure 8: Classification OA for different values of
SNR

It can be observed from Fig. 2 (b), Fig. 3, Fig.
5, Fig. 6, Fig. 8 and Table 1 that MLR-PARAFAC
method has the potential to denoise real-world HSI
images distorted by both SI and SD noise. This pre-
processing permits an enhancement of SNR in HSI
thereby allowing both an improvement of results of
ACE target detector and SVM classifier.

6 CONCLUSION

In this paper, we developed a new multidimensional
denoising method based on multiple linear regression
and multilinear algebra tools to enhance SNR of
HSI data collected by new-generation hyperspectral
sensors, distorted by both SI colored and SD noise.
To reduce both SD and SI noise, we propose a
tensor-based method which consists of two steps.
Firstly, MLR algorithm can be applied to remove the
SI colored noise. Then, to reduce the residual SD
components, PARAFAC decomposition is applied to
the denoised HSI by the previous step. PARAFAC
decomposition must be conducted at the appropriate
rank which can be estimated according to the statisti-
cal properties of SD noise. The performance of the
proposed MLR-PARAFAC method are validated on
the simulated HSIs distorted by both SD and SI noise
and on the real-world HYDICE and AVIRIS Indian
Pines HSIs. The HYDICE dataset is used to evaluate
the denoising and detection results when the AVIRIS
dataset of Indian Pines is used to assess classification
results. The experimental results show the efficiency
of the proposed denoising algorithm to improve the
SNR in hyperspectral images, the detection and the
classification results.

From the analysis and the comparative study
against other similar methods in the experiments, it
can be concluded that MLR-PARAFAC method can
effectively reduce both SD and white or colored SI
noise from HSIs. It is also necessary to take into ac-
count the noise signal-dependency hypothesis when
dealing with HYDICE or AVIRIS HSI data.
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